
Mech - A Programming Platform for Robots and Other
Data-Driven Systems

Corey Montella
cmontella@cse.lehigh.edu

Lehigh University
Bethlehem, PA, United States

Abstract
We present Mech, a programming language and system for
building data-driven systems such as robots, games, simula-
tions, animations, and user interfaces. Mech aims to increase
developer productivity and lower the barrier of entry to pro-
gramming by replicating the expressiveness of Matlab for
robot programming while offering the platform features of
the Robot Operating System (ROS), and the performance
of C++. Mech leverages unique and expressive abstractions
suited for robot control tasks, allowing for concise speci-
fication of complex systems with potentially a two-order-
of-magnitude discount in code length compared to typical
code. Mech takes into account the highly parallel, asynchro-
nous, and distributed nature of robots and other data-driven
systems, which is not well-served by existing programming
languages. The paper maps the design of Mech in the pro-
gramming system design space, presents two examples of its
utility for simulation and robot programming, and shows it
its performance is on par with compiled languages like Rust.

CCS Concepts: • Computer systems organization→ Ro-
botics; • Software and its engineering → Data flow lan-
guages.

Keywords: programming language,robotics

ACM Reference Format:
Corey Montella. 2023. Mech - A Programming Platform for Robots
and Other Data-Driven Systems. In Proceedings of Make sure to
enter the correct conference title from your rights confirmation emai
(Onward!). ACM, New York, NY, USA, 17 pages. https://doi.org/
XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Onward!, October 22–27, 2023, Cascais, Portugal
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
The robot revolution roboticists have been presaging is fi-
nally coming to pass; robots are vacuuming floors, mowing
lawns, checking stock in stores, managing warehouses, de-
livering goods to consumers, and more at unprecedented
levels [18]. We are at the precipice of a new era of robotics,
where the impact they have on ordinary people will perhaps
be just as impactful as that of the Internet in the 1990s.

As we stand at that precipice, the complexity of robots is
exploding such that the general population, who will soon be
working with and walking among robots every day, are be-
ing left further behind. Because of this, many are concerned
that a greater prevalence of robots and automation in society
will create societal disruption as they replace workers. If
robots are meant to be such an integral part of our lives, then
everyone should have the access, opportunity, and knowl-
edge to program them. But with today’s state-of the art robot
systems coming in at perhaps a billion lines of code [13], is
there any hope that the development of such complicated
machines ever be democratized?

The 2007 DARPA Urban Challenge (DUC) offers an infor-
mative example that may bring some hope. The DUCwas the
third in a series of competitions hosted by DARPA aimed at
facilitating American development of autonomous vehicles
for both domestic and military purposes. The competition
tasked researchers with creating autonomous vehicles that
could navigate an environment complete with sidewalks,
intersections, lane markings, and other features common in
modern urban traffic scenarios. DARPA provided two com-
petitive tracks during the DUC: they selected six Track-A
teams to receive $1 million grants to fund their entry to the
competition; meanwhile five Track-B teams were allowed to
compete, but were not provided funding from DARPA. The
results of the race show that six teams out of the 11 total
managed to finish the course, and out of those six only one
was a Track-B team – the Ben Franklin Racing Team* (BFRT)
[4]. Every other finishing team was Track-A. How did the
BFRT manage to do this with a quarter of the funding used
by Track-A teams?
The answer may lie in how many lines of code the BFRT

wrote for the challenge; whereas MIT, Stanford, CMU, and
other top contestants clocked their codebases in at hundreds-
of-thousands of lines of C++ code [20], the BFRT wrote a
mere 5,000 lines of Matlab code [3]. Given these two systems

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Onward!, October 22–27, 2023, Cascais, Portugal C. Montella

Figure 1. (Top) A simple publisher subscriber is implemented in ROS and Python, where one program (a publisher) sends data
to another program (a subscriber) over a ROS network. Highlighted in boxes are the irreducibly complex parts of the program.
All other code is incidental. (Bottom) The same publisher subscriber implemented in pure Mech. Notice that the Mech version
is almost entirely essential aside from a comment.

of similar behavior, the excess code required to specify the
system in C++ represents what Mosely and Marks would
term “incidental complexity” [22], which is any complexity
involved in specifying the system that is not directly related
to the “essential complexity” of the problem domain. I.e.,
every problem is essentially complex, and there’s no way to
elide that complexity without respecifying the problem. But
not every system implemented to solve a particular problem
is equally complex – some are more complex than others, and
while that extra complexity may be justified, it comes at a
cost. For lines of code on a robot, this complexity manifests as
time spent writing, maintaining, and debugging all that code.
Figure 1 shows the kind of dramatic code-length reduction
we can expect when incidental complexity is minimized.

Thus, we can frame our objective: to increase roboticist
productivity and lower the barrier of entry to robot program-
ming, we can do what the BFRT did in building their robot,
Little Ben – leverage abstractions especially suited for robot
control tasks. This will allow us to concisely specify complex
robot systems, with potentially a two-order-of-magnitude
discount in code length. In so doing, we will decrease the

incidental complexity involved in robot programming, allow-
ing us to create ever-more complex research and commercial
robots, while simultaneously lowering the barrier of entry
for students and hobbyists building simpler machines.
Equipped with this bit of history and a clear goal, we

present Mech, a programming language and platform that
aims to replicate the expressiveness of Matlab for robot pro-
gramming, while also offering the features that roboticists
enjoy from platforms such as the Robot Operating System
(ROS). Its intended applications beyond robotics are games,
simulations, animations, and user interfaces. Our goal with
Mech is to use unique and expressive abstractions to increase
developer productivity, and lower the learning curve of robot
programming. Our hope is that with Mech, what’s possible
for a graduate student with current tools would be doable for
an undergraduate; and what’s doable for an undergraduate
today with current tools, would be doable for a high or mid-
dle school student with Mech. To paraphrase Alan Kay, with
Mech, simple things should be simple while complicated
things should be doable.

We believe such a dramatic speedup in developer produc-
tivity is possible due to the presence of a severe impedance

Mech - A Programming Platform for Robots and Other Data-Driven Systems Onward!, October 22–27, 2023, Cascais, Portugal

mismatch between current robot programming tools and the
nature of robotics engineering/research; the key insight driv-
ing the design of Mech is that robots have a highly parallel,
asynchronous, and distributed nature – yet many of the tools
we use to create them, like C++ and Python, were designed
in an age when computers had at most a single core and
were marginally networked. The design of these languages
reflects the architecture of the machines of their time, and
consequences of these designs carries through to today, de-
spite the underlying machines having changed substantially.
For the first time in the history of computing the exponential
progress of CPU core frequency has stalled, but an explosion
of core counts in consumer-grade processors has begun in-
stead. At the same time, “co-processors” are proliferating to
handle specialized workloads like graphics, artificial intelli-
gence, computer vision, and physics. These processors are
especially well-suited for robotics applications, as these are
all core components of modern robot systems.
In this paper, we detail the design of the Mech program-

ming language, and present several examples that illustrate
its utility. First, we briefly survey existing robot program-
ming languages in Section II. Then in Section III we provide
an overview of Mech’s syntax and semantics. Section IV cat-
alogs the technical dimensions of the Mech programming
system. Finally, we evaluate Mech’s performance against
several programming languages for two representative tasks:
running a simulation, and a robotics algorithm. Finally, in
Section V we conclude with a roadmap for Mech and a call
to join our cause of democratizing robotics for everyone.

The Mech project was started in 2014 in response to a per-
ceived limitations of existing programming languages used
in the field of robotics research. Since then, the project has
undergone several significant milestones and achievements.
In 2018, the development we began implementing the

language, drawing inspiration from various programming
languages, including Eve, Smalltalk, Logo, Lucid, Matlab, Ex-
cel, and ROS. The project’s development was a collaborative
effort among experts in robotics research and programming
language design.

As of now, Mech is in the beta-stage of development, and
has over 6,000 commits and a small core budget of 10k LOC
(currently at 12k). The team implemented Mech in Rust, a
fast and safe systems language, and designed it to be safe,
efficient, and accessible to a broad range of users in the field
of robotics research. Mech is open source and licensed under
Apache 2.0.

Though Mech has been primarily presented within the
context of robotics so far, this paper will demonstrate that its
application extends beyond that; Mech’s programming para-
digm, designed for data-driven systems, can be effectively
applied to various other domains, such as games, animations,
and user interfaces.

1.1 Language Purpose
The purpose of the Mech project is to reduce development
time of robotic systems by leveraging abstractions that har-
monize with robot architecture and design patterns, and
which are unavailable or cumbersome to access in languages
that are currently in widespread use.

To achieve these goals, Mech’s design philosophy centers
around data flow programming and asynchronous program-
ming. This approach enables efficient and scalable solutions
to complex robotics problems while providing high-level
abstractions that make it easier for beginners to get started
with robotics programming.

1.2 Design Philosophy
Mech’s design philosophy is tailored to the unique needs of
robotics development, which are distinct from those of tradi-
tional systems that process static data. Robots have agency,
can move and interact with their environment, and operate
in real-time. Therefore, it’s logical to start from the nature
of a robot and select the features that best align with its
requirements. The combination of features in Mech creates
a singular point in the programming system design space
that addresses these needs effectively.

Although none of Mech’s individual features are novel in
themselves, the combination of these features in a single lan-
guage is what makes it unique. The purpose of this paper is
to explore the comparatively unexplored territory of robotics
programming languages, and describe how Mech’s features
interact across the various axes of the design space. By doing
so, this paper aims to establish Mech as a benchmark for
programming languages designed for robotics development.

1.3 Major System Features
In this section, we list the key features that summarize
Mech’s character and set it apart from other languages. For
a detailed discussion on these features, see Section 4.

• Mech is a dataflow language – computation happens
in the presence of data, and the system is idle without
it. Mech programs are expected to resemble a control
loop that runs forever, although traditional programs
that terminate after processing a batch input can be
written.

• Mech is reactive – all computations are kept up to
date as dependent data change. This is especially rel-
evant for robots whose architectures are designed as
control loops that continuously consume sensor data
and react to it.

• Mech is parallel – The programming metaphor in
Mech is that everything is a table, much like in Mat-
lab. Functions and arithmetic, logic, and comparison
operators in Mech are broadcast over the elements of
the table, so most computations can be parallelizable
by default.

Onward!, October 22–27, 2023, Cascais, Portugal C. Montella

Figure 2. Mech syntax overview. This currently represents the entirety of the language. There are no control flow structures
in Mech. Note that the Mech programming system is distinct from this syntax, and that any number of syntaxes or graphical
programming interfaces could be attached to a Mech runtime. Currently there are no other syntaxes available, but this is as
potential area of expansion.

• Mech is distributed – programs in Mech define a
network of nodes communicating via message passing.
This is the dominant paradigm in mid-level general ro-
botics programming, and this concept is built into the
ambient semantics of the Mech language. The Mech
runtime automatically figures out the topology of a
program’s compute network based on data dependen-
cies, or a programmer can specify one manually within
the language itself.

• Mech is asynchronous – in interactingwith the phys-
ical world, robots are inherently asynchronous ma-
chines. Therefore, Mech embeds this concept into the
language semantics. Because the entire language is
distributed, all library calls are asynchronous. This
means opening a file or sending a network request is
nonblocking by default; a Mech program that makes a
request to a network server will continue running and
working on other tasks while it waits for the response,
and then will react to it as soon as it arrives.

1.4 Target Users and Applications
Mech should be usable by industry professionals, academic
researchers, and students as young as middle school. Al-
though these users have a wide difference in programming
ability, We believe the impact of the Meh system design will
serve to significantly lower the barrier of entry to robot pro-
gramming for students. For experts, we hope they can use
Mech to augment their existing skills and knowledge.

• Industry Professionals: Experienced engineers need
a safe and efficient language that integrates with their
existing systems to design and develop robots.

• Academic Researchers: Experienced researchers re-
quire an open-source language that enables easy collab-
oration and helps create robotic systems for advanced
research.

• College Students: Students need a user-friendly lan-
guage that is easy to learn and use, while allowing
them to work with robotic systems.

• Middle School Students: Beginners need an engag-
ing, user-friendly language that allows them to develop
programming skills while having fun and creating in-
teractive robotics projects for STEM education.

We also intend Mech to be used beyond just robotics;
any system which can be described or modeled as a data-
driven feedback control loop would be well-suited for Mech.
This system design covers a surprising variety of problem
domains:

• Games: reactive programming model, built-in graph-
ics and audio libraries, and native GPU support make
it well-suited for game development.

• Scientific Computing: support for physical units and
automatic differentiation make it well-suited for sci-
entific computing applications, such as physics simu-
lations and machine learning.

Mech - A Programming Platform for Robots and Other Data-Driven Systems Onward!, October 22–27, 2023, Cascais, Portugal

• Control Systems: dataflow nature and feedback con-
trol loop model of Mech programs make it well-suited
for control systems generally, such as those used in
industrial automation and process control.

• Real-Time Systems: temporal operators and predictable,
allocation-free execution make it well-suited for real-
time systems, such as those used in avionics and auto-
motive applications.

• Web Applications: ability to compile to WebAssem-
bly makes it well-suited for web applications, partic-
ularly those that require high performance computa-
tion.

1.5 Syntax Primer - The Bouncing Balls Example
Figure 2 provides an overview of the Mech syntax, and Fig.
3 demonstrates an implemted simulation of 2D balls in a
bounded arena while applying gravity and repulsion. The
Mech code is embedded in a Markdown dialect called "Mech-
down" that enables literate programming in plain text.
The Mech code starts by defining tables that include the

initial position and velocity of the balls, the acceleration due
to gravity, the time step, and the boundaries of the arena.
These tables are annotated with physical units that ensure
consistency in calculations and scale compatible units when
necessary.

A timer is set up on line 11 to update the positions of the
balls every 16 milliseconds. Asynchronous code starting on
line 13 waits for the timer to change and recomputes the
positions of the balls accordingly, using their velocities and
the time step.

Finally, the code on line 20 enforces boundary constraints
on the "balls" table to prevent any ball from leaving the
arena. If a ball exceeds the boundary, its position is set to the
boundary before the computation resolves. Logical indexing
is used to apply the constraint only to the affected rows. This
ensures that the balls never exist in an invalid state.

2 A Brief Survey of Robotics Programming
Languages

Robot programming languages have a long history that
closely tracks the history of robotics in general – as robot
designs have become more varied, and their capabilities have
expanded over the years, robot programming languages have
evolved to meet the control challenges they create. We can
roughly divide the robot programming language field into
three broad camps: industrial languages, general purpose
languages, and educational languages. We also survey lan-
guages with similar features to Mech used in programming
robots.

2.1 Industrial robot languages
In the early history of industrial robots, languages were often
purpose-built by robot manufacturers to be used with their

Figure 3. Mech program modeling a physical system.

line of robots. This tight coupling of robot and language
meant that companies could offer specialized interfaces to

Onward!, October 22–27, 2023, Cascais, Portugal C. Montella

their hardware which could take advantage of their product’s
unique offerings. However, from an industry perspective it
meant that skills in programming one robot often could not
be transferred to another robot. Many of these languages –
such as Kuka’s KRL, FANU’s Karel, Yasakawa INFORM II, or
ABB’s RAPID language – were descended from Pascal and
therefore were largely procedural. Programs often involved
a sequence of instructions to set the robot’s various joints to
a specified angle [2][9].

Beyond textual programming languages, industrial robots
are often programmed using a device known as “teach pen-
dant”, which provides a convenient and simplified user inter-
face to a robot without the need to write code. This allows a
technician to physically program a robot by directing it with
the teach pendent, and then recording the instructions for
replay later.

2.2 General purpose robot languages
Robot requirements differ greatly outside of settings where
environmental conditions cannot be predetermined, Robots
that navigate in these environments rely on an ever-expanding
variety of sensors and actuators to measure and respond to
their surroundings. Accordingly, robot languages are sig-
nificantly more complex in this arena. Languages here can
be divided into three camps: low-level hardware control,
mid-level behaviors, and high-level planning.
For programming low-level control, languages exist that

interface directly with hardware. It is quite common for the
C programming language to be used in these contexts due
to its ubiquity. Concerns in this domain involve interfacing
with hardware directly, so the ability to manipulate data and
memory at the bit level is important here.
At the mid and high levels, the current state of robotics

software development revolves around the Robot Operating
System (ROS) platform. ROS is a middleware that provides
various tools to facilitate robotics programming, such as
interprocess communication, logging, and data visualization.
With its robust message passing capabilities, ROS encourages
a node-based architecture where loosely coupled functional
units within the robot system (nodes) pass messages to one
another.
Not being a programming language itself, the ROS plat-

form leverages general purpose programming languages
to implement the logic contained within each node. Lan-
guages such as C++ and Python are among the most popular
in robotics today, but each suffer critical shortcomings in
implementing asynchronous distributed systems (hence the
need for the ROS middleware in the first place). Several other
languages have been used in this domain as well [15][5].

2.3 Educational robot languages
At the other end of the complexity scale are educational ro-
bot programming languages. These languages are designed
to appeal to children and novices, and are often presented

with colorful and animated, cartoonish interfaces. Scratch
[21] and Blockly are two block-based languages that attempt
to hide the complexity of programming by wrapping the
various elements in Lego-like blocks that programmers snap
together using a colorful GUI. However, this only hides the
complexity and has limited utility outside of learning con-
texts.

Seymour Papert took a different approach when he devel-
oped the Logo language, which preceded Scratch and Blockly.
He designed Logo to account for child psychology to make
programming easier. In Logo, programs are written in the
context of a graphical drawing interface, and programmers
assume the perspective of a “Turtle” that serves as the in-
program avatar of the programmer. Commands are issued to
the Turtle like “forward 100” to move the Turtle forward 100
pixels. The Turtle was the result of incorporating research
from childhood development into the design on the language.
The key insight Papert leveraged is that while young children
may not have a well-developed ability for abstract reasoning
yet, they do have excellent reasoning over their own motor
skills. By asking them to imagine themselves as the Turtle,
Papert found he could get young learners to perform deep
abstract reasoning tasks through the lens of their own kine-
matics, with findings showing that they were able to come to
conclusions about physics related problems usually reserved
for graduate studies. The lesson of Logo is that abstractions
targeted at a particular domain or even a particular user
psychology can allow novice programmers to nevertheless
write sophisticated programs [25].

Other efforts exist in the educational robot programming
sector, including Mindstorms from Lego, which combines
Lego building sets with a computer and sensors. The pro-
grams are written in a visual, flow-based language, or a
dialect of C, which is common in toy-grade robotics prod-
ucts.

2.4 Distributed Robot languages
The literature presents a diverse array of programming lan-
guages and paradigms designed to manage complex, dis-
tributed systems such as robot ensembles and reactive net-
works. Meld [1], for instance, utilizes a logic-based approach
to program a collection of robots from a global perspective,
contrasting with Mech’s use of an iterative approach based
on sensor data and internal models. However, Meld does not
offer Mech’s time-travel debugging, error handling, or access
control mechanisms.

DREAM [17], on the other hand, emphasizes the balance
between consistency and overhead in distributed reactive
programming. While sharing with Mech the concept of dy-
namic reactivity, DREAM’s focus is on adjusting consis-
tency levels for different applications, a feature not explicitly
present in Mech.
Notably, a series of papers focus on fault tolerance and

reactive programming. One work presents an approach to

Mech - A Programming Platform for Robots and Other Data-Driven Systems Onward!, October 22–27, 2023, Cascais, Portugal

provide fault tolerance for distributed reactive programming
without changing existing programs’ behavior, aligning with
Mech’s ability to handle errors [19] . Meanwhile, another
discusses eliminating "glitches" or temporary violations of
data flow invariants [27], which is also a something that
Mech’s support by way of a built-in transactional database.

Myter et al. identify an essential disconnection between re-
active programming languages and the actual requirements
of reactive distributed systems [23]. They argue that existing
approaches are not adequately equipped to handle reactive
distributed systems because they are based on centralized
coordination points and overlook partial system failures. In
contrast, Mech is designed to operate without a single cen-
tral point of coordination and acknowledges the possibility
of partial failures, making it well-suited for complex and
distributed systems.

Buzz, like Mech, is designed for heterogeneous robot sys-
tems, but it focuses on swarm dynamics [26]. ASEBA [16],
similarly, proposes a modular architecture for event-based
control of complex robots, while SYNDICATE [8] presents
a coordinated, concurrent programming language. While
these approaches offer intriguing solutions for specific sce-
narios, none seem to encapsulate Mech’s combination of
sensor data processing, error management, flexible access
control, and other features.

3 Language Design
Mech’s programmingmodel relies on a feedback control loop,
where it waits for data to update a compute network. Unlike
traditional languages with entry points like a "main" func-
tion that starts execution and runs until completion, Mech
programs run indefinitely, waiting for data and reacting to
it. There is no need to invoke a starting function; instead,
you supply the runtime the relevant data needed to start the
desired process.

The key ingredients to a Mech program are values, tables,
blocks, cores, and machines. Values are the most concrete
element in Mech, whereas machines are the most abstract.

Mech programs are built on a unified value type (number,
string, Boolean) as basic data elements. Values are organized
into rows and columns and represented as tables for struc-
tured data storage. Tables are the ubiquitous and only data
structure in Mech, that can represent scalars, vectors, matri-
ces, and tensors as well.
Blocks, containing self-contained transformations, inter-

act with tables to process data. A cores encompasses any
number of blocks, acting as a computational engine that
manages memory and block order execution.
Finally, machines package and distribute cores, provid-

ing modular and reusable functionality. This hierarchical
organization, from values to machines, results in a modu-
lar, maintainable, and scalable programming language for
various applications.

3.1 Programming Model
Mech is ideal for systems using asynchronous input streams
from various sources. relying on sensory data from cameras
or accelerometers. Robots utilize numerous sensors like cam-
eras, IMUs, and LiDARs as inputs. As these sensors produce
data, Mech processes it to update a model. This model then
issues controls to actuators, creating a continuous cycle of
sensory input, processing, and response.

Similarly, in real-time games like pong, Mech updates the
ball’s position every tick of the game clock. Player actions
drive game events like moving the player paddles.

For desktop applications with graphical interfaces, Mech
processes user inputs like mouse movements and button
presses, updating the display with computed program el-
ements on each command, otherwise maintaining a static
("immediate mode") interface.

In these scenarios, Mech only computes when data is
present. After data arrives, Mech triggers computations and
updates the state, then the system waits for more data. This
constitutes a Mech program’s lifecycle.

In the following sections, we will build the Mech language
up from it’s base elements, describing the fundamental atoms
(values) to the highest abstraction (machines).

3.2 Values
Mech programming language supports a variety of data types
that facilitate the creation of complex data structures and
their manipulation through a set of operators and index-
ing primitives. This section discusses the basic data types
available in Mech, including numbers, strings, booleans, and
tables, as well as their representations and use cases.

3.2.1 Numbers and Quantities. Mech provides support
for numerous number literal formats, such as decimal (10,
-42), hexadecimal (0x01234ABCDEF), octal (0o77), binary in-
tegers (0b1010), floating-point numbers (3.14, -1.23), scientific
notation (6.02e23), and complex numbers (2.5+2i). Decimal
numbers without a type specifier default to f32, but other
kinds can be indicated using an annotation (e.g., 123<u8>).
In addition to basic number literals, Mech accommodates
numbers with physical units, known as quantities (e.g., 5<m>
for 5.0 meters). Mech can automatically handle unit conver-
sions during arithmetic operations, such as adding 5<m> and
10<ft> to obtain 8.0484<m>. Mech supports various numeric
kinds, including unsigned and signed integers, and floating
point (IEEE 754-2008).

3.2.2 Strings. Mech employs UTF-8 encoding to enable
support for Unicode and emojis within its string data type.
This is crucial in facilitating the use of various languages by
default. Additionally, Mech’s string type is interned as 64-bit
IDs into the system, and once defined, they are immutable.

3.2.3 Booleans. Boolean values in Mech are represented
by the keywords "true" and "false". These represent the only

Onward!, October 22–27, 2023, Cascais, Portugal C. Montella

English keywords in the syntax, so to support a genericMech,
we also support the Unicode characters such as check mark
and x mark, to represent true and false. Boolean values can
also be the result of boolean expressions or logical operations.
They are particularly useful for filtering tables with logical
indexing.

3.2.4 Table Literals. Mech’s table data type consists of
rows and columns, where each column represents a specific
attribute of the data, and each row represents a specific
instance of the data. Tables can be created using literals,
which are indicated by square brackets [] enclosing a list of
values, with spaces and/or commas delineating columns and
semicolons and/or newlines delineating rows. For example,
[1 2; 3 4] represents a 2x2 matrix of numbers. Index aliases
can be added to table columns to improve readability, as
shown in [|name age| "Yan" 20; "Seth" 23]. Kinds can be
assigned to table columns using a kind annotation, such
as [|name<string> age<u8>| "Yan" 20; "Seth" 23]. Mech also
supports inline tables, like [name: "Yan" age: 20], and nested
tables, which allow for the creation of more complex data
structures such as trees and structs, for instance, [type: "div",
contains: "HelloWorld!", parameters: [width: 100 height: 50]]
could represent an HTML div element.

3.3 Tables
Mech represents all variables as tables, which are highly
flexible and can be used to represent everything from scalars
to tables to arrays to vectors. Tables are assigned to identifiers
using the = operator, and they have block scope by default
but can be made globally scoped by prepending the identifier
with a # symbol.

3.4 Table Scoping
Mech allows the definition of both local and global variables
in a block. Local variables can only be accessed within their
own block, while global variables are accessible throughout
the program. For instance, #pi = 3.14 is a globally scoped
variable that holds the value of pi.

3.5 Kind Annotations
Mech tables can be annotated with a kind, which specifies the
expected type of the table contents. For example, #num<u64>
= 1234, #str<string> = "Hello, world!", and #bool<bool> =
true are annotated variables. The string and bool annota-
tions can be inferred from the assigned datatype, but the u64
annotation is necessary because the inferred datatype of the
number literal 1234 is f32. Kind annotations provide a more
precise typing system and help avoid common programming
errors.

3.6 Access Control
Mech’s architecture supports high-level and low-level ac-
cess to data and operations, with access control enforced

dynamically by cores. High-level access involves abstract
operations such as process control (starting / stopping cores)
or parameter adjustments, requiring specific permissions for
safe execution. Low-level access covers fundamental oper-
ations, including direct hardware interactions (e.g. reading
files, writing to the network) and resource management (e.g.
allocating memory, accessing processors like GPUs).
Mech cores enforce capabilities by checking if the token

associated with requested operation has the necessary capa-
bilities and a signature which is validated against a public
key. This real-time authorization mechanism ensures that
every action performed is authorized.

3.7 Blocks
Blocks are the fundamental building blocks of Mech pro-
grams, allowing for the creation, selection, transformation,
and writing of data. They are composable, orderless, and
reactive units of code, which makes them highly flexible
and adaptable for various programming tasks. Blocks are
indicated by indenting code from the margin. Contiguous
lines are compiled together as a block of transformations on
the tables named in the block.

3.7.1 Blocks are Composable. Composability in blocks
refers to their ability to depend on other blocks and to be
depended upon by other blocks. This creates a data flow
between blocks, which is determined by their data depen-
dencies and productions. As data gets updated, blocks au-
tomatically re-execute to update their results, making it
easy to build modular programs and maintain complex data
pipelines.

3.7.2 Blocks areOrderless. The order inwhich blocks are
written does not affect the computation; Mech determines
the correct ordering of blocks based on their data dependen-
cies, which allows for greater freedom in exploratory and
expository programming without being constrained by an
arbitrary block order.

3.7.3 Blocks are Reactive. Reactivity in blocks ensures
that their results are automatically updated as the data they
depend on changes. This feature applies to the entire block
graph, making it easy to build dynamic and responsive ap-
plications without worrying about the details of how the
computations will be updated as data changes.

3.8 Cores
Mech cores serve as the backbone of the Mech programming
language, providing encapsulated computational engines
that efficiently host blocks, tables, and manage memory allo-
cation. They support asynchronous functions and machines,
enabling concurrent execution of tasks, and facilitate dis-
tributed programming by connecting to other cores through
core networks.

Mech - A Programming Platform for Robots and Other Data-Driven Systems Onward!, October 22–27, 2023, Cascais, Portugal

Mech cores are self-contained computational units de-
signed to host blocks and tables, with each core allocating
its own memory arena for storing the database. The encap-
sulation ensures that each core operates independently and
efficiently while allowing for concurrent execution of tasks.
This takes full advantage of available hardware resources
and leads to improved performance.

3.8.1 Distributed Programming with Cores. One of the
key features of Mech cores is their ability to connect and
communicate with other cores. This is achieved through
a core network implemented on top of UDP sockets and
websockets for integration with browsers. This networking
capability enables users to create distributed programswhere
cores can send and receive data from other cores, allowing
for complex, collaborative data processing across multiple
cores.
The ability to connect with other cores and engage in

distributed programming enables users to leverage the power
of multiple cores working together. This collaboration results
in efficient resource utilization and improved performance
for large-scale applications.
To ensure the security and integrity of distributed pro-

grams and their data, Mech offers a capability permission
system that manages and protects network resources. This
system allows users to control access to resources, ensuring
that only authorized cores can access and manipulate data.
By maintaining strict access control, Mech helps to preserve
the security of the distributed program and its data, while
still enabling seamless collaboration and communication
between cores.

3.8.2 Security and Resource Management.

3.9 Machines: A Comprehensive Module System
Machines, a cornerstone of Mech’s architecture, serve as a
robust module system. Their role extends beyond packaging
and distributing cores for reuse. They promote maintain-
ability, scalability, and interoperability in Mech’s program
design. Unlike traditional libraries, machines encapsulate
more than functions or data structures; they have the ca-
pacity to encapsulate entire applications. This distinctive
functionality allows the sharing of complex features, data
structures, or even complete applications across programs.

Machines come equipped with several key features such as
automatic dependency resolution and the ability to download
from Mech’s machine repository. They support not only
native Mech functions but also functions compiled from
other languages.

3.9.1 Interoperability andExtensibility. Mech supports
interoperability by accommodating Machines that contain
functions compiled from high-performance languages such
as Rust. Mech also supports JavaScript through WebAssem-
bly (Wasm), ROS, and C++. This cross-language support

enables Mech programs to leverage the performance, safety,
and ubiquity of these languages, thereby enriching the Mech
environment with diverse capabilities.
This broad integration also gives rise to an extensible

module system that allows users to augment Mech’s na-
tive functionality with specialized libraries and tools from
various ecosystems. This capacity allows users to draw on
the strengths of external programming environments while
capitalizing on Mech’s unique features.

3.9.2 Capabilities. Machines in Mech, whether started
independently or loaded into an existing core, operate in tan-
demwith the system’s capabilities, ensuring system integrity
and access control. Each machine has a set of necessary ca-
pabilities to function, which the corresponding core must
possess for the machine to load successfully.

An example of this process involves the io/write machine.
Before this machine, which manages the program’s ability
to write to the standard output (stdout), is loaded, the core
checks if it has the appropriate, valid, and signed capability
to write to stdout.

4 Technical Dimensions
Understanding a programming language’s syntax and se-
mantics is usually enough to comprehend its purpose and
capabilities in relation to other languages. However, Mech is
more than just a language, as it includes built-in features for
program distribution and debugging. Thus, Mech requires a
more comprehensive taxonomy to describe the entire system.
In this section, we will describe Mech as a programming

system by using the technical dimensions proposed in [14],
which provide a framework for analyzing programming sys-
tems. Programming systems encompass a broader range
of tools and approaches beyond just the language, and by
examining Mech within each technical dimension, we can
compare its design choices to other programming systems
and determine where it falls within the spectrum of possible
design choices.

4.1 Interaction
Mech’s programming model incorporates two distinct feed-
back loops to cater to different aspects of the programming
process: the runtime loop and the live coding loop.

4.1.1 Feedback Loops. The runtime loop manages the
program’s execution cycle, automatically reacting to incom-
ing data from various sources and updating dependent blocks
accordingly. This efficient feedback loop reduces the amount
ofwork required fromuserswhen specifying systems, stream-
lining the handling of data-driven systems.

The live coding loop focuses on the development process,
providing a responsive and interactive environment for users
to iterate on their ideas and refine their programs. Users can
see the immediate results of their code changes, fostering a

Onward!, October 22–27, 2023, Cascais, Portugal C. Montella

bouncing-balls.mec other1.mec □ ×_other2.mec× | × | ×

Simulation Core × | ×|

+

+Core 1

Bouncing Balls Simulation

1. Model

2. Update

 a. Motion

 b. Constraints

3. Drawing

 a. Circles

 b. Canvas

 b. App

#balls = [|x<m> y<m> vy<m/s> vx<m/s>|

 20 10 2.4 0

 100 50 0 3

 300 100 0 -5]

#gravity = 9.8<m/s^2>

#dt = 16<ms>

#bounds = [x<m>: 500, y<m>: 600]

Bouncing Balls Simulation

==========================

This program is a forward kinematic simulation of three balls bouncing in a bounded arena. Each

of the balls are accelerated by simulated gravity and are repelled by the bounds of the arena.

1. Model

In Mech, code and prose are interwoven.

This listing is a valid Mech program

(indeed, the source code of this entire

paper is a valid Mech program). Prose is

expressed in a dialect of Markdown called

Mechdown. A table preceded with a hashtag

belongs to a global network-wide scope,

accessible from any node in the Mech

compute network. Writing to and reading

from these tables can be thought of as

message passing.

~ 60<Hz>

 #balls.x,y :+= #balls.vx,vy * #dt

 #balls.vy :+= #gravity * #dt

~ 60<Hz>

 iy = #balls.x,y > #bounds

 ix = #balls.x,y < 0

 #balls.x,y{iy} := #bounds

 #balls.x,y{ix} := 0

 #balls.vx,vy{iy | ix} := -#balls.vx,vy * 80%

#time/timer += [period: 16<ms>]

We can define a timer by adding a row to the table #time/timer. This table is not defined in

our program, so Mech will search for it in the Mech package repository, and automatically

download it if it’s available. If not, Mech will search for it on the network or wait until it

becomes available on another node.

2. Update

Because these two blocks do not depend on one another, the Mech scheduler will execute them

concurrently.

|

3. Drawing

Display the simulation results on a 2d canvas. Because Mech is reactive, these tables will

update as the positions of the balls change. #circles depends on #balls.x and #balls.y and

will update accordingly. Because #balls has three rows, the parameters field of #circles

will as well. The scalar values entered for radius and fill will be copied to fill the

table.

#circles = [
 shape: "circle"
 parameters: [
 center-x: #balls.x
 center-y: #balls.y
 radius: 20
 fill: 0xAA0000]]

canvas = [
 type: "canvas"
 contains: [#circles]
 parameters: [|height width| #bounds]]

 #app = [[canvas]]

Code

Tables

Docs

Inspect

Timeline

Settings

Figure 4. Design mockup of a prototype Mech IDE, written in Mech. Features tabs to manage editor panes (top), tabs to
manage cores (bottom), tabs for opening and closing side panels and toolbars (left). The center area features a canvas, where
developers can add rich text, Mech code, and can even visualize program output.

more efficient development experience. This real-time feed-
back also enables debugging of running systems, allowing
users to diagnose and fix issues without time-consuming
restarts or code rebuilds.

4.1.2 Abstraction Construction. Abstraction construc-
tion inMech is centered around blocks, which facilitate build-
ing and refining programs incrementally. Users can create
abstractions by defining new blocks while the program is run-
ning, and seamlessly integrate them into the existing system.
This incremental approach offers several benefits, including
real-time feedback for evaluating the impact of changes and
aiding debugging and optimization. Users can maintain a
high level of confidence in their program’s correctness and
performance as they build up abstractions incrementally.

Figure 4 depicts the Mech IDE, built using Mech itself, pro-
vides a flexible and user-friendly development environment.
It features a tabbed interface for managing editor panes and
cores, customizable side panels, and a versatile canvas that
combines text, code, and visualizations. Additionally, its real-
time adaptability allows for on-the-fly adjustments and ad
hoc tooling support. This rich set of features streamlines
the development process and enhances the programming
experience, making it easier to create efficient and adaptable
Mech programs.

4.2 Notation
4.2.1 Notational Structure. Mech uses a textual program-
ming notation that is designed for clarity and conciseness.
This structure is built around global tables, user-defined
functions, custom data types, and array-based operations, al-
lowing for a clean and organized representation of robot pro-
gramming tasks. The notational structure in Mech is tailored
for expressing complex behaviors and managing interactions
between various components of a robotic system.

4.3 Surface and Intentional Notation
Mech’s notational structure is built around global tables,
user-defined functions, custom data types, and array-based
operations, which allow for a clean and organized repre-
sentation of robot programming tasks. Tables are a crucial
element of Mech’s notational structure, serving as a univer-
sal data type and allowing for the representation of complex
data structures in a simple and intuitive manner. By relying
on tables, Mech avoids the need for complex data conver-
sion and a proliferation of symbols in the notation. Instead,
tables provide a consistent and uniform way to manage and
manipulate data.

Mech - A Programming Platform for Robots and Other Data-Driven Systems Onward!, October 22–27, 2023, Cascais, Portugal

Figure 5. Code selections from the Mech IDE. Lines 4-6 demonstrate reacting to a button press by sending text to the Mech
compiler for compilation. Lines 9-16 shows the layout of the application; its structure is a table of tables. Line 19-28 shows
how the IDE can react to the user moving the mouse.

4.4 Primary and Secondary Notations
The primary notation in Mech is the textual programming
language, which includes all essential constructs for defining
robot behaviors and interactions. While the language does
not rely on secondary notations, it is compatible with visu-
alizations and other tools that can enhance understanding
and provide additional context for users. These secondary
notations can be used to complement the primary notation
when necessary, but the primary notation remains the core
means of expressing programs in Mech.

4.5 Expression Geography
In Mech, similar expressions are designed to encode similar
programs. The language promotes consistency and unifor-
mity in its notation, making it easier for users to recognize
patterns and understand the relationships between different
parts of the code. This expression geography is an impor-
tant aspect of Mech’s design, as it aids in readability and
comprehension of the programs.

4.6 Uniformity of Notations
Mech strives for uniformity in its notations by utilizing a
small number of basic concepts that can be combined and
extended to handle a wide range of robot programming tasks.
This uniformity simplifies learning and using the language,
as users only need to become familiar with a limited set of

core constructs to create complex programs. The language
has no keywords, and only a small number of operators.
Square brackets are used exclusively for table declarations;
curly braces are used exclusively for table indexing; and
angle brackets are used exclusively for kind annotations.

5 Conceptual Structure
5.1 Conceptual Integrity
Mech balances conceptual integrity and openness in its de-
sign, offering a language that is both elegantly designed and
highly adaptable to a wide range of use cases. At its core,
Mech is built on a database that holds tables, which serve
as a universal data structure that can represent anything
from sensor readings to program logic. This uniformity pro-
motes conceptual integrity by providing a consistent and
organized way to manage and manipulate data, simplifying
the programming experience and enabling users to more
easily construct meaning.

5.2 Composability
Mech components are composable from the top to bottom.
At the syntax level, values of any kind can be composed into
tables. Multiple tables compose to form the basis of a block,
along with transformations defined over the tables. Blocks
compose on the basis of their data dependencies, and define
a core compute network.

Onward!, October 22–27, 2023, Cascais, Portugal C. Montella

Cores themselves are made of many blocks, and them-
selves compose on the basis of their data dependencies, but
also on their access controls; new cores will reach out to the
local Mech network to find other cores, and will negotiate
data depencies with them. If a remote core has data the new
core needs, and the new core has a capability to access it,
then the new core will download that data and integrate it
into its own memory.
At the highest level, machines can compose as well. Ma-

chines are made of one ore more cores, and can be made of
machines as well. This uniformly modular approach to com-
posability allows Mech programs to be easily extended and
adapted to a wide range of robotic systems and applications.

5.3 Convenience
Mech provides convenience to users by incorporating a rich
set of built-in functions and features specifically designed
for robotics applications. This prevents users from having
to reinvent the wheel for common tasks, such as handling
asynchronous communication, working with physical units,
or managing parallel computations.

6 Customizability
6.1 Staging
Mech allows for both customization of running programs
and inert ones. Changes made to the code can be applied
dynamically, with running programs being able to adapt
to modifications without requiring a complete restart. The
changes made persist beyond termination, allowing users to
build on and modify their programs incrementally.

6.2 Addressing and Externalizability
Mech provides a high degree of addressing and externalizabil-
ity. Portions of the system’s state can be easily referenced and
transferred between different parts of the program through
global tables. This promotes modularity and facilitates the
integration of new expressions and modules that can alter
the system’s behavior. Furthermore, Mech’s asynchronous
and distributed nature enables seamless interaction with ex-
ternal systems, making it adaptable to various hardware and
software environments.

6.3 Self-sustainability
Mech is designed to be self-sustainable, allowing users to
modify and extend the system’s behavior fromwithin the lan-
guage itself. With support for user-defined functions, custom
data types, and dynamic dispatch, users can create new ab-
stractions and extend existing ones as needed. Additionally,
Mech’s built-in safety features, such as integrity constraints,
and its capability permission system, help ensure the stability
and security of the system as it evolves; if a developer wants
to lock down the system to prevent it from self-modification,

they are able to craft a capability to express whatever access
controls they prefer.

7 Complexity
7.1 Factoring of Complexity
Mech effectively handles the factoring of complexity by pro-
viding reusable components and abstractions that hide in-
tricate programming details. Functions, blocks, cores, and
machines are all used to encapsulate code in Mech, allows
the user to decide the appropriate granularity of abstraction
for their project.

7.2 Level of Automation
Mech provides a high level of automation, reducing the need
for users to explicitly specify certain aspects of program
logic. For instance, Mech’s inherent asynchronous and dis-
tributed nature allows for automatic parallelization of tasks,
eliminating the need for manual thread management or syn-
chronization. Additionally, Mech’s dynamic dispatch and
built-in support for units (quantities) help automate tasks
like type checking and unit conversion. These automated
features not only simplify the development process but also
reduce the likelihood of errors related to manual handling.
Mech’s reactive runtime frees developers from having to
decide when and how to process events, and the distributed
runtime makes the decision of when and how to ship data
to remote cores effortless.

8 Errors
8.1 Error detection
Mech incorporates error detection mechanisms throughout
development stages, from initial coding to program runtime
execution. A key feature is type checking during compila-
tion, ensuring consistency in variable types, dimensions, and
appropriate unit conversions. This prevents severe errors,
like those in the Mars Climate Orbiter incident, which re-
sulted from unit discrepancies [24]. The system enhances
code safety by preemptively detecting potential inconsisten-
cies before they evolve into runtime errors.
Mech’s runtime error detection and debugging are en-

hanced by its deterministic and idempotent database system.
Determinism guarantees consistent output for the same in-
put, simplifying debugging. Idempotence allows for ’time-
travel debugging,’ where developers can retrace steps to
locate and understand errors. Additionally, replaying past
events facilitates post-mortem debugging, enabling error
analysis even after occurrence. These features together make
Mech a reliable platform for writing safe, consistent code.

For instance, in a robot scenario, if an unexpected behavior
arises, developers can replay the sensor data log during the
error occurrence in Mech. Developers can then step through
the Mech code as it processes this data sequentially, inspect-
ing variables and states at each step. This not only pinpoints

Mech - A Programming Platform for Robots and Other Data-Driven Systems Onward!, October 22–27, 2023, Cascais, Portugal

when the error happened but also provides crucial insights
into what triggered the unexpected behavior, offering a path
to resolution.

8.2 Error response
Upon detecting an error, Mech responds in different ways, de-
pending on the nature and severity of the error. For instance,
when the system detects a unit conversion error during com-
pilation, it alerts the user with an appropriate error message,
allowing them to fix the issue before execution. In the case
of runtime errors, such as violations of integrity constraints,
Mech’s internal database rejects the offending transaction,
and the robot’s state is reset to where it was before the trans-
action occurred. This ensures that the system remains stable
and predictable even when errors occur.
Rolling back to a prior state when errors arise maintains

system integrity and predictability. This strategy ensures
data consistency by rejecting transactions that could vio-
late system integrity, thereby keeping the system in a valid
state. It also promotes system stability by reverting to a
known state, minimizing the impact of erroneous transac-
tions. This rollback also helps isolate errors for easier debug-
ging, and sustains predictable system behavior by avoiding
unpredictable states. Despite the associated costs, such as
potential progress loss, the benefit of maintaining a reliable
and predictable system outweighs these, especially in critical
applications like robotics. Unfortunately this error handling
scheme does not prevent a system from starting at an invalid
state, in which case performance would be unpredictable.

9 Adoptability
Mech is designed to be accessible to a wide range of users,
from experienced programmers to domain experts with lim-
ited coding experience. This requires careful attention to
usability and learnability, as well as a focus on addressing
social issues that can limit participation in technical fields.
In this section, we will discuss how Mech approaches these
challenges and strives to create a programming environment
that is welcoming and supportive for all users. We will be-
gin by examining Mech’s learning curve and the tools and
features that make it easy for users to get started and build
competence quickly. We will then move on to discuss Mech’s
efforts to promote diversity and inclusion in the tech com-
munity, and how these efforts are reflected in the design of
the language and its supporting ecosystem.

9.1 Learnability
Mech addresses the learning curve by providing a range of
tools and features. One such tool is the advanced debugger,
which provides logs and time travel debugging. The debug-
ger helps programmers quickly identify and fix errors, which
is particularly useful for beginners who may struggle to un-
derstand what is happening in their code. In addition, Mech

provides helpful error messages that guide programmers to-
wards possible solutions, reducing the frustration and time
spent on debugging.

Another feature that supports the learning curve in Mech
is live programming. With live programming, programmers
can see the effects of their code changes immediately, which
helps them understand the relationships between different
parts of their program. This feature is particularly useful for
beginners who may have difficulty visualizing the behavior
of their code. By being able to see the results of their changes
in real-time, programmers can gain a deeper understanding
of how the code works.

Moreover, Mech’s language-agnostic design promotes uni-
versal accessibility in programming education. It addresses
the linguistic and cultural barriers often faced by non-native
English speakers learning to program, as found in several
studies [10] [11] [7]. These learners frequently grapple with
understanding instructional materials, technical communi-
cation, and the simultaneous learning of English and pro-
gramming.

Mech alleviates these issues by reducing reliance on language-
specific keywords, inspired by the approach of Hedy [12],
a programming language designed for novices that intro-
duces syntax gradually, although Mech takes the idea to an
extreme. This approach eases the learning curve and allows
learners to focus more on the logic and concepts of program-
ming, making Mech an inclusive programming platform for
a diverse global audience.

9.2 Sociability
Mech is designed to be accessible to a wide variety of users,
from beginners to advanced programmers. In addition to pro-
viding a gentle learning curve, Mech also tries to addresses
social issues in computing and the world at large. By em-
powering people to use Mech, the language can serve as
an educational tool to teach younger kids about robots and
computers.
The outreach component of Mech, called Forward Ro-

botics, aims to promote STEM education and has been suc-
cessfully used in engineering outreach programs such as
CHOICES at Lehigh. Over the Spring and Summer of 2022,
Mech was used in an engineering outreach program called
CHOICES, which aims to deliver STEM enrichment activities
to middle school girls. Mech is intended to be used by stu-
dents, so CHOCIES was an ideal preliminary environment
for Mech.
In total, more than 60 girls representing twelve schools

from the Lehigh Valley and surrounding areas attended and
participated in the robotics activity. They used Mech prin-
cipally to program LED displays on Sphero Bolt robot balls,
using colored Emojis.

The students, who had no prior programming experience,
created over two dozen such images, and were able to do so

Onward!, October 22–27, 2023, Cascais, Portugal C. Montella

quickly and with minimal help from instructors and under-
graduate volunteers, who themselves had only basic training
on the language. Although this was not a formal study of
the Mech language, the results were encouraging and point
to a need for future study of Mech with this demographic.

Mech is also free, open source, low-resource, and runs on
many devices, including phones, making it accessible to stu-
dents who lack access to computers. This means Mech could
find its way into developing countries where low-power
cellphone usage is higher.

10 System Evaluation
In this section, we evaluate the performance of Mech using
two different programs, the bouncing ball example from
earlier, as well as an Extended Kalman Filter implementation.

Figure 6. Performance of Mech (purple) compared to Rust
(red), Matlab (orange), and Python (blue) on the bouncing
balls simulation described in Listing 1, which is a CPU-bound
task. All simulations were implemented natively in the re-
spective languages. Simulations were run on a Quad-Core
11th gen. Intel Core H35 i7-11370H processor with 32GB
LPDDR4x RAM. Fine-grained parallelism allows Mech to
achieve top performance in this benchmark by fulling utiliz-
ing the CPU.

10.1 Bouncing Balls Performance
The bouncing balls program in Fix. 3 is a classic benchmark
used to compare the performance of programming languages.
It involves simulating the behavior of a set of bouncing balls
within a confined space, with each ball bouncing off walls
and other balls according to simple physics rules. This test
is representative of Mech’s workload, as it involves complex

data manipulation and dynamic simulation, both of which
are key features of the language. By measuring the perfor-
mance ofMech on this test, we can gain insight into its ability
to handle real-world tasks that involve data processing, sim-
ulation, and visualization.
We compared Mech against several other programming

languages commonly used in scientific computing, including
Python, Matlab, and Rust. The results, shown in Fig. 6, indi-
cate that Mech outperformed Python by a significant margin,
which is not surprising given Python’s interpreted nature.
Matlab exhibited behavior indicative of a garbage collector,
which is not ideal for real-time simulations. Rust, which is
known for its performance, performed at the top of the pack.

However, Mech managed to exceed Rust’s performance by
leveraging parallelism. This is made clear in Fig. ??, which
shows the CPU utilization of the respective languages over
the test duration. The figure reveals that Mech was able to
achieve 100% CPU aggregate utilization across all 8 cores,
whereas the next highest utilization was Matlab at 78%. This
is a significant achievement considering that Mech is a high-
level language that abstracts away the complexities of paral-
lel programming. This means that programmers can focus
on writing code instead of worrying about parallelism, and
still achieve impressive performance.

Note that Python’s exceptionally poor performance is ex-
pected due to its dynamic nature and global interpreter lock.
There are ways to improve performance of Python, through
third party libraries, but this comparison used native code.

The results of the bouncing balls test demonstrate Mech’s
ability to compete with established scientific computing lan-
guages, while also providing a high-level programming en-
vironment with built-in parallelism. This makes Mech an
attractive option for scientific computing, robotics, and other
real-time applications where performance and ease of use
are critical.

10.2 An Extended Kalman Filter Implementation
10.2.1 Implementation. Extended Kalman Filters are used
extensively in robotics to perform state estimation. In this
example, an EKF was deployed to estimate the state of a
simulated robot in a 2D world. The robot can be observed by
cameras, which report only the bearing of the robot in the
camera’s frame when it is within range. As the robot moves,
its true position is updated, and the EKF algorithm uses the
cameras’ observations to update the estimated position. A
description of this algorithm can be found in [28]. Relevant
portions of the Mech implementation are shown in Fig. 8,
which depicts the use of features such as matrix multipli-
cation with the ** operator, user-defined functions, vector
swizzling, the apostrophe transpose operator, asynchronous
blocks, and operator broadcast over vectors. The algorithm
as expressed in [28] is 22 lines, so the implementation here
is about as compact as it can be while staying true to the

Mech - A Programming Platform for Robots and Other Data-Driven Systems Onward!, October 22–27, 2023, Cascais, Portugal

Figure 7.Mech (top) versus Matlab (bottom) performance
on the EKF algorithm. This graph measures the simulation
frequency of the EKF algorithm under both languages. The
log scale on the y-axis means that Mech runs 500x faster
than the Matlab implementation. The reason for this is likely
due to how Matlab allocates memory within the simulation
loop, whereas Mech pre-allocates and reuses pools.

source presentation. Notably though, when the Mech auto-
differentiation engine is fully implemented, this example will
be able to be simplified, as the Jacobians in the algorithm
could be automatically derived.

10.2.2 Performance. The performance of Mech and Mat-
lab was compared using the Extended Kalman Filter (EKF)
algorithm, with the simulation frequency being the metric
of comparison across a number of iterations. Fig. 7 shows
that Mech significantly outperformed Matlab, running 500
times faster.
This difference in performance may be attributed to the

way in which Matlab allocates memory within the simula-
tion loop, as opposed to Mech’s pre-allocation and reuse of
memory pools. Matlab will allocate a new stack frame on
each function call, because it doesn’t expect that the function
will be used after that context. Mech, however, does assume
the function will be used again, because Mech programs
are intended to be cyclic. Therefore, memory only has to be
allocated once for the EKF filter.

Another source of optimization for Mech over Matlab lead-
ing to this result is that Mech’s multiple dispatch compiler
chooses the appropriate optimized function to use given the
types and dimensions of the function arguments. All Matlab
matrices can possibly change shape dynamically at runtime,
so Matlab cannot make any optimizations here. Mech de-
termines which tables are static and which tables can grow
at runtime, and it can aggressively optimize for tables that
do not grow, as is the case with the tables in the EKF filter,
which has been shown to be beneficial by [6]

The comparison demonstrates Mech’s efficient memory
management and optimized execution, making it a com-
pelling choice for high-performance computing tasks despite
its simple syntax.

11 Discussion and Conclusions
In this paper, we introduced Mech, a new programming lan-
guage and platform for robots. The combination of features
offered by Mech may serve to achieve the goal increasing
productivity and decreasing barriers to entry to robotics, and
preliminary findings are promising in that regard. The im-
plementation is open sourced and licensed under Apache 2.0
so that anyone can freely use and contribute to the language.
Mech is still early in its development, but the language is
nearing a beta release for public evaluation. Some of the fea-
tures described in this paper, while they exist as a prototype
in the system, are not fully implemented yet. Features which
are working include: a distributed runtime, asynchronous
execution, fine grained parrellism execution, performance,
units and unit converstion (although not custom units), types
tables, multiple dispatch on tables of different shapes, live
coding environment with an editor and literate program-
ming support, time travel debugging, native executables, a
native GUI interface, a REPL, a testing framework and pro-
filer, and the capability permission system. These features
although implemented, are implemented but not complete,
and may crash, or not be supported for all data types and
systems. ROS integration is handled through a machine that
leverages Rust’s ROS bindings.
Currently in the experimental phase of development are

GPGPU, automatic differentiation, AI integration (Stable Dif-
fusion, ChatGPT).
The second quarter of the 21st century is going to wit-

ness the rapid advancement of robotic technologies and a
contrast in hardware architecture from the 20th and early
21st century, where as many as 4 cores were available on a
commercial-grade CPU, but certainly not hundreds or thou-
sands. One way to make sure the robots work for the inter-
ests of every one of us to democratize access to the ability
to program them. We believe Mech embodies the ideals of
a platform that will help advance the field of robotics for
everyone.

References
[1] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C.Mowry, and Padman-

abhan Pillai. 2007. Meld: A declarative approach to programming en-
sembles. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2794–2800. https://doi.org/10.1109/IROS.2007.4399480

[2] G. Biggs and B. Macdonald. 2003. A survey of robot programming
systems. In Proceedings of the Australasian Conference on Robotics and
Automation. 27.

[3] J. Bohren, T. Foote, J. Keller, A. Kushleyev, D. Lee, A. Stewart, P. Vernaza,
J. Derenick, J. Spletzer, and B. Satterfield. 2009. Little Ben: The Ben
Franklin Racing Team’s Entry in the 2007 DARPA Urban Challenge.
Springer, 231–255.

https://doi.org/10.1109/IROS.2007.4399480

Onward!, October 22–27, 2023, Cascais, Portugal C. Montella

Figure 8. A partial listing of an EKF algorithm implemented in Mech. This listing demonstrates several features of Mech,
including user-defined functions (lines 4-13 and 15-23), Unicode support in source code, native matrix multiplication through
the ** operator, table transpose through the apostrophe operator (as in Matlab), vector swizzling, asynchronous blocks, and the
use of various standard library functions.

[4] M. Buehler, K. Iagnemma, and S. Singh. 2010. The DARPA Urban
Challenge: Autonomous Vehicles in City Traffic. Springer.

[5] M. Carroll, K. S. Namjoshi, and I. Segall. 2021. The resh programming
language for multirobot orchestration. CoRR abs/2103.13921 (2021).

[6] Maxime Chevalier-Boisvert, Laurie Hendren, and Clark Verbrugge.
2010. Optimizing MATLAB through Just-In-Time Specialization. In
CC ’10:.

[7] Sayamindu Dasgupta and Benjamin Mako Hill. 2017. Learning to Code
in Localized Programming Languages. In Proceedings of the Fourth
(2017) ACM Conference on Learning @ Scale (L@S ’17). ACM, New York,
NY, USA, 33–39. https://doi.org/10.1145/3051457.3051464 Published:12
April 2017.

[8] T. Garnock-Jones and M. Felleisen. 2016. Coordinated Concurrent
Programming in Syndicate. In European Symposium on Programming
Languages and Systems. 310–336. https://doi.org/10.1007/978-3-662-
49498-1_13

[9] G. C. Gini andM. L. Gini. 1982. Ada: A language for robot programming.
Computers in Industry 3 (1982), 253–259.

[10] Philip Guo. 2018. Non-Native English Speakers Learning Computer
Programming: Barriers, Desires, and Design Opportunities. 1–14.
https://doi.org/10.1145/3173574.3173970

[11] Carmen Nayeli Guzman, Anne Xu, and Adalbert Gerald Soosai Raj.
2021. Experiences of Non-Native English Speakers Learning Computer

Science in a US University. In Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education (SIGCSE ’21). ACM, New
York, NY, USA, 633–639. https://doi.org/10.1145/3408877.3432437
Published:05 March 2021.

[12] Felienne Hermans. 2020. Hedy: A Gradual Language for Programming
Education. In Proceedings of the 2020 ACM Conference on International
Computing Education Research (ICER ’20). ACM, New York, NY, USA,
259–270. https://doi.org/10.1145/3372782.3406262 Published:07 Au-
gust 2020.

[13] Jaguar. 2019. Jaguar Land Rover Finds the Teenagers Writing the
Code for a Self-Driving Future. https://www.jaguarlandrover.com/
news/2019/09/jaguar-land-rover-finds-teenagers-writing-code-self-
driving-future

[14] Joel Jakubovic, Jonathan Edwards, and Tomas Petricek. 2023. Technical
Dimensions of Programming Systems. The Art, Science, and Engineering
of Programming 7, 3 (2023), 13. https://doi.org/10.22152/programming-
journal.org/2023/7/13

[15] T. Koolen and R. Deits. 2019. Julia for robotics: simulation and real-time
control in a high-level programming language. In 2019 International
Conference on Robotics and Automation (ICRA). 604–611.

[16] S. Magnenat, P. Rétornaz, M. Bonani, V. Longchamp, and F. Mondada.
2011. ASEBA: A Modular Architecture for Event-Based Control of
Complex Robots. IEEE/ASME Transactions on Mechatronics 16, 2 (Apr

https://doi.org/10.1145/3051457.3051464
https://doi.org/10.1007/978-3-662-49498-1_13
https://doi.org/10.1007/978-3-662-49498-1_13
https://doi.org/10.1145/3173574.3173970
https://doi.org/10.1145/3408877.3432437
https://doi.org/10.1145/3372782.3406262
https://www.jaguarlandrover.com/news/2019/09/jaguar-land-rover-finds-teenagers-writing-code-self-driving-future
https://www.jaguarlandrover.com/news/2019/09/jaguar-land-rover-finds-teenagers-writing-code-self-driving-future
https://www.jaguarlandrover.com/news/2019/09/jaguar-land-rover-finds-teenagers-writing-code-self-driving-future
https://doi.org/10.22152/programming-journal.org/2023/7/13
https://doi.org/10.22152/programming-journal.org/2023/7/13

Mech - A Programming Platform for Robots and Other Data-Driven Systems Onward!, October 22–27, 2023, Cascais, Portugal

2011), 321–329. https://doi.org/10.1109/TMECH.2010.2042722
[17] A. Margara and G. Salvaneschi. 2018. On the Semantics of Distributed

Reactive Programming: The Cost of Consistency. IEEE Transactions
on Software Engineering 44, 7 (Jul 2018), 689–711. https://doi.org/10.
1109/TSE.2018.2833109

[18] J. Marshall. 2021. The robot revolution is here: How it’s chang-
ing jobs and businesses in Canada. The Conversation (Feb
2021). https://theconversation.com/the-robot-revolution-is-here-
how-its-changing-jobs-and-businesses-in-canada-155267

[19] R. Mogk, L. Baumg"artner, G. Salvaneschi, B. Freisleben, and M. Mezini.
2018. Fault-tolerant Distributed Reactive Programming. In Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH. https://doi.org/10.
4230/lipics.ecoop.2018.1

[20] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger,
D. H"ahnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp,
D. Langer, A. Levandowski, J. Levinson, J. Marcil, D. Orenstein, J.
Paefgen, I. Penny, and S. Thrun. 2009. Junior: The Stanford entry in the
urban challenge. Springer, 91–123.

[21] S. Moros, L. Wood, B. Robins, K. Dautenhahn, and A. Castro-Gonzalez.
2020. Programming a humanoid robot with the scratch language. In
Robotics in Education. 222–233.

[22] B. Mosely and P. Marks. 2006. Out of the Tar Pit. Software Practice
Advancement (2006).

[23] F. Myter, C. Scholliers, and W. De Meuter. 2019. Distributed Reactive
Programming for Reactive Distributed Systems. The Art, Science, and
Engineering of Programming 3, 3 (Feb 2019), 5:1–5:52. https://doi.org/
10.22152/programming-journal.org/2019/3/5

[24] NASA. 2019. Mars Climate Orbiter. https://solarsystem.nasa.gov/
missions/mars-climate-orbiter/in-depth/

[25] S. Papert. 1980. Mindstorms: children, computers, and powerful ideas.
Basic Books, Inc.

[26] C. Pinciroli and G. Beltrame. 2016. Buzz: An extensible programming
language for heterogeneous swarm robotics. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Daejeon, South
Korea, 3794–3800. https://doi.org/10.1109/IROS.2016.7759558

[27] K. Shibanai and T. Watanabe. 2018. Distributed functional reactive
programming on actor-based runtime. In Proceedings of the 8th ACM
SIGPLAN International Workshop on Programming Based on Actors,
Agents, and Decentralized Control. Boston, MA, USA, 13–22. https:
//doi.org/10.1145/3281366.3281370

[28] S. Thrun, W. Burgard, and D. Fox. 2005. Probabilistic Robotics. The
MIT Press. 204 pages.

https://doi.org/10.1109/TMECH.2010.2042722
https://doi.org/10.1109/TSE.2018.2833109
https://doi.org/10.1109/TSE.2018.2833109
https://theconversation.com/the-robot-revolution-is-here-how-its-changing-jobs-and-businesses-in-canada-155267
https://theconversation.com/the-robot-revolution-is-here-how-its-changing-jobs-and-businesses-in-canada-155267
https://doi.org/10.4230/lipics.ecoop.2018.1
https://doi.org/10.4230/lipics.ecoop.2018.1
https://doi.org/10.22152/programming-journal.org/2019/3/5
https://doi.org/10.22152/programming-journal.org/2019/3/5
https://solarsystem.nasa.gov/missions/mars-climate-orbiter/in-depth/
https://solarsystem.nasa.gov/missions/mars-climate-orbiter/in-depth/
https://doi.org/10.1109/IROS.2016.7759558
https://doi.org/10.1145/3281366.3281370
https://doi.org/10.1145/3281366.3281370

	Abstract
	1 Introduction
	1.1 Language Purpose
	1.2 Design Philosophy
	1.3 Major System Features
	1.4 Target Users and Applications
	1.5 Syntax Primer - The Bouncing Balls Example

	2 A Brief Survey of Robotics Programming Languages
	2.1 Industrial robot languages
	2.2 General purpose robot languages
	2.3 Educational robot languages
	2.4 Distributed Robot languages

	3 Language Design
	3.1 Programming Model
	3.2 Values
	3.3 Tables
	3.4 Table Scoping
	3.5 Kind Annotations
	3.6 Access Control
	3.7 Blocks
	3.8 Cores
	3.9 Machines: A Comprehensive Module System

	4 Technical Dimensions
	4.1 Interaction
	4.2 Notation
	4.3 Surface and Intentional Notation
	4.4 Primary and Secondary Notations
	4.5 Expression Geography
	4.6 Uniformity of Notations

	5 Conceptual Structure
	5.1 Conceptual Integrity
	5.2 Composability
	5.3 Convenience

	6 Customizability
	6.1 Staging
	6.2 Addressing and Externalizability
	6.3 Self-sustainability

	7 Complexity
	7.1 Factoring of Complexity
	7.2 Level of Automation

	8 Errors
	8.1 Error detection
	8.2 Error response

	9 Adoptability
	9.1 Learnability
	9.2 Sociability

	10 System Evaluation
	10.1 Bouncing Balls Performance
	10.2 An Extended Kalman Filter Implementation

	11 Discussion and Conclusions
	References

